首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   4篇
  国内免费   34篇
地球物理   2篇
地质学   86篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
 Raman spectra of diopside were collected from atmospheric pressure to 71 GPa. The pressure dependences of 22 modes were determined. Changes occurred in the spectra at three different pressures. First, at approximately 10 GPa, the two Raman modes at 356 and 875 cm−1 disappeared, while the mode at 324 cm−1 split into two modes, diverging at this pressure with significantly different pressure shifts; second, at approximately 15 GPa, a small (1 to 2 cm−1) drop in several of the frequencies was observed accompanied by changes in the pressure dependency of some of the modes; and third, above 55 GPa, the modes characteristic of chains of tetrahedrally coordinated silicon disappeared, while those for octahedrally coordinated silicon appeared. The first change at 10 GPa appears to be a C2/c to C2/c transition involving a change in the Ca coordination. The third change above 55 GPa appears to be a change in the silicon coordination. At 15 GPa, it is suggested that a change in compressional mechanism takes place. Received: 14 November 2000 / Accepted: 9 January 2002  相似文献   
2.
鲁中碳酸岩中磷灰石同位素地球化学研究   总被引:6,自引:0,他引:6  
鲁中地区分布着100多个碳酸岩体,微量元素含量及稀土配分等均与世界典型碳酸岩相近。而碳酸岩的碳氧及斑晶磷灰石的锶、钛同位素组成与典型地幔物质有差异,与富集地幔颇为近似,从而证实在山东地区陆壳下存在富集地幔源区。  相似文献   
3.
Microindentation hardness tests were performed on jadeite and diopside, being end members of the omphacite solid solution series. At temperatures between 300 and 750 °C, the hardness of jadeite ranges from 7.4 to 8.5 GPa, that of diopside from 4.9 to 6.1 GPa. Jadeite is significantly stronger than diopside in the low-temperature plasticity regime. Normalization of the hardness-derived yield stress with respect to the shear modulus considerably reduces the strength contrast. The normalized Peierls stress is identical for jadeite and diopside. This indicates that jadeite and diopside belong to the same isomechanical group. The hardness-derived yield stress for jadeite as well as for diopside is used to estimate flow law parameters for the low-temperature plasticity regime.  相似文献   
4.
R. Burgess  G.B. Kiviets  J.W. Harris 《Lithos》2004,77(1-4):113-124
Ar–Ar age measurements are reported for selected eclogitic clinopyroxene and garnet inclusions in Orapa diamonds and clinopyroxene inclusions in Venetia diamonds. Laser drilling of encapsulated clinopyroxene inclusions within Venetia diamonds released a maximum of 3% of the total 40Ar, indicating little diffusive transfer and storage of radiogenic 40Ar at the diamond–inclusion boundary. Apparent ages obtained during stepped heating of three diamonds are consistent with diamond crystallisation occurring just prior to the kimberlite eruption 520 Ma ago. Stepped heating of three clinopyroxene-bearing Orapa diamonds gave ages of 906–1032 Ma, significantly above the eruption age, but consistent with previously determined isotopic ages. A few higher apparent ages hint at the presence an older generation of Orapa diamonds that formed >2500 Ma ago. Orapa garnets also contain measurable K contents, and record a range of ages between 1000 and 2500 Ma. The old apparent ages and lack of significant interface 40Ar released by the laser probe, suggests that pre-eruption radiogenic 40Ar and mantle-derived 40Ar components are trapped in microinclusions within the pyroxene and garnet inclusions.  相似文献   
5.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   

6.
Clinopyroxenes from pyroxenite, ijolite and nepheline syenite from the main intrusion of the Alnö complex define two sub-parallel compositional trends with respect to Na, Ca and FeTOT plotted against alkali-pyroxene fractionation index (Na–Mg). Both trends define a smooth fractionation of increasing Na and FeTOT and decreasing Ca with increasing Na–Mg, but one set of samples contain clinopyroxenes that constantly plot at higher Na and lower FeTOT and Ca (at similar Na–Mg) than the rest of the samples. Clinopyroxenes with higher Ca and FeTOT and lower Na (trend 1) co-exist with substantial amounts of Ti-andradite (up to 70 vol.%), while the sample set defining the more Na-rich trend (trend 2) lack co-existing Ti-andradite. Clinopyroxenes from both trends show fractionated REE patterns with a distinct difference in HREE content, reflecting the content of co-existing Ti-andradite. The rocks of the first Ti-andradite-bearing trend crystallized slightly prior to the rocks of the second trend, probably from a primitive, Ca- and Ti-rich nephelinitic magma. Crystallisation of pyroxenite and melteigite occurred under low aSiO2 and high aCaO and aTiO2 as evidenced by the presence of perovskite and sometimes substantial amounts of magnetite. Subsequent increase in aSiO2 is evidenced in the overgrowth of perovskite by titanite, which in turn is overgrown by Ti-andradite. Nepheline syenitic residuals crystallized under higher aSiO2 and aNa2O and lower aCaO and aTiO2, which reduced Ti-andradite into an accessory phase and produced more Si- and Na-rich clinopyroxenes. Some of these residuals probably also mixed with new primitive magma producing a hybrid magma that crystallised the more Na-rich and Ca- and FeTOT-poor clinopyroxenes of trend 2. The complete lack of Ti-andradite in these rocks indicates different crystallisation conditions and also a different magma composition.  相似文献   
7.
穿插在江西广丰早白垩纪红盆中的碱性基性岩,K—Ar年龄为40.6Ma,基性岩中辉石有基质、斑晶二种类型三个世代,早世代辉石斑晶为巨晶、堆晶,是“Ⅱ型包体”;晚世代辉石斑晶为小斑晶、堆晶;伴生有适量橄榄石斑晶;最晚晶出的是基质中的辉石。多世代辉石的出现为反演该区深部地质特征提供了依据。  相似文献   
8.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   
9.
作者通过对我国东部新生代玄武岩中巨晶Cpx的109个样品的化学成分的统计、计算及投影,研究了Cpx巨晶的产状、物性及矿物化学的主要特征,并对其成因信息提出了自己的看法。Cpx巨晶的成分以A1_2O_3、A1~(v1)较高而Ti、Mg'中等为特征。但在“反应边”中,A1_2O_3、Na_2O、A1、A1~(v1)则明显降低。我国巨晶以普通辉石为主,而透辉石、次透辉石及顽透辉石少见。国内不同地区的Cpx巨晶成分也略有不同:华南区巨晶的Wo较高而A1_2O_3较低;华北区Fs、A1_2O_3较高;而东北区En较高而A1_2O_3中等。有关Cpx巨晶的成因信息,作者的观点是:(1)巨晶Cpx是寄主玄武岩浆在上地幔中结晶的产物,而不是地幔解体的捕虏晶。(2)我国巨晶Cpx的结晶温度是1021—1209℃,压力为1.4—3.2GPa,所以,Cpx巨晶的结晶深度为48—104Km。(3)我国东部新生代玄武岩均产于大陆板块内部,以碱性玄武岩成分为主,而拉斑玄武岩较少。  相似文献   
10.
对北京房山花岗闪长岩体中长石斑晶进行了系统测量,测点密度平均4.37个/km~2,测量标志为长石斑晶长轴长度和长石斑晶线含量等。对测得数据进行了分布统计、有序样品最优分割、和趋势变化分析等处理。揭示了长石斑晶在岩体中的分布规律和数学特征,划分了趋势岩相带,从而提出了较为合理的岩相带划分原则。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号